Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccine ; 40(45): 6455-6462, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2050054

ABSTRACT

The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue , HIV Infections , Humans , Vaccines, Attenuated , COVID-19 Vaccines , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , HIV Infections/prevention & control , Antibodies, Viral , Immunogenicity, Vaccine
2.
Nat Biotechnol ; 40(5): 681-691, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713197

ABSTRACT

As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.


Subject(s)
COVID-19 , Single-Cell Analysis , Chromatin , Humans , Single-Cell Analysis/methods , Transposases , Exome Sequencing
4.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: covidwho-1337122

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
6.
Nature ; 584(7821): 463-469, 2020 08.
Article in English | MEDLINE | ID: covidwho-677004

ABSTRACT

Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokines/analysis , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Adult , Aged , Aged, 80 and over , COVID-19 , Cluster Analysis , Cytokines/immunology , Eosinophils/immunology , Female , Humans , Immunoglobulin E/analysis , Immunoglobulin E/immunology , Interleukin-13/analysis , Interleukin-13/immunology , Interleukin-5/analysis , Interleukin-5/immunology , Male , Middle Aged , Pandemics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viral Load , Young Adult
7.
J Clin Invest ; 130(9): 4947-4953, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-611525

ABSTRACT

BACKGROUNDThe effects of the novel coronavirus disease 2019 (COVID-19) in pregnancy remain relatively unknown. We present a case of second trimester pregnancy with symptomatic COVID-19 complicated by severe preeclampsia and placental abruption.METHODSWe analyzed the placenta for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through molecular and immunohistochemical assays and by and electron microscopy and measured the maternal antibody response in the blood to this infection.RESULTSSARS-CoV-2 localized predominantly to syncytiotrophoblast cells at the materno-fetal interface of the placenta. Histological examination of the placenta revealed a dense macrophage infiltrate, but no evidence for the vasculopathy typically associated with preeclampsia.CONCLUSIONThis case demonstrates SARS-CoV-2 invasion of the placenta, highlighting the potential for severe morbidity among pregnant women with COVID-19.FUNDINGBeatrice Kleinberg Neuwirth Fund and Fast Grant Emergent Ventures funding from the Mercatus Center at George Mason University. The funding bodies did not have roles in the design of the study or data collection, analysis, and interpretation and played no role in writing the manuscript.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Placenta/pathology , Placenta/virology , Pneumonia, Viral/complications , Pregnancy Complications, Infectious/etiology , Pregnancy Complications, Infectious/virology , Abortion, Therapeutic , Abruptio Placentae/etiology , Abruptio Placentae/pathology , Abruptio Placentae/virology , Adult , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Microscopy, Electron, Transmission , Pandemics , Phylogeny , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pre-Eclampsia/etiology , Pre-Eclampsia/pathology , Pre-Eclampsia/virology , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Trimester, Second , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2 , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL